# -*- coding: utf-8 -*-
"""
Cost estimates for lattice redution.
"""
from sage.all import ZZ, RR, pi, e, find_root, ceil, floor, log, oo, round, sqrt
from scipy.optimize import newton
from .cost import Cost
[docs]class ReductionCost:
@staticmethod
def _delta(beta):
"""
Compute δ from block size β without enforcing β ∈ ZZ.
δ for β ≤ 40 were computed as follows:
```
# -*- coding: utf-8 -*-
from fpylll import BKZ, IntegerMatrix
from multiprocessing import Pool
from sage.all import mean, sqrt, exp, log, cputime
d, trials = 320, 32
def f((A, beta)):
par = BKZ.Param(block_size=beta, strategies=BKZ.DEFAULT_STRATEGY, flags=BKZ.AUTO_ABORT)
q = A[-1, -1]
d = A.nrows
t = cputime()
A = BKZ.reduction(A, par, float_type="dd")
t = cputime(t)
return t, exp(log(A[0].norm()/sqrt(q).n())/d)
if __name__ == '__main__':
for beta in (5, 10, 15, 20, 25, 28, 30, 35, 40):
delta = []
t = []
i = 0
while i < trials:
threads = int(open("delta.nthreads").read()) # make sure this file exists
pool = Pool(threads)
A = [(IntegerMatrix.random(d, "qary", beta=d//2, bits=50), beta) for j in range(threads)]
for (t_, delta_) in pool.imap_unordered(f, A):
t.append(t_)
delta.append(delta_)
i += threads
print u"β: %2d, δ_0: %.5f, time: %5.1fs, (%2d,%2d)"%(beta, mean(delta), mean(t), i, threads)
print
```
"""
small = (
(2, 1.02190),
(5, 1.01862),
(10, 1.01616),
(15, 1.01485),
(20, 1.01420),
(25, 1.01342),
(28, 1.01331),
(40, 1.01295),
)
if beta <= 2:
return RR(1.0219)
elif beta < 40:
for i in range(1, len(small)):
if small[i][0] > beta:
return RR(small[i - 1][1])
elif beta == 40:
return RR(small[-1][1])
else:
return RR(beta / (2 * pi * e) * (pi * beta) ** (1 / beta)) ** (1 / (2 * (beta - 1)))
[docs] @staticmethod
def delta(beta):
"""
Compute root-Hermite factor δ from block size β.
:param beta: Block size.
"""
beta = ZZ(round(beta))
return ReductionCost._delta(beta)
@staticmethod
def _beta_secant(delta):
"""
Estimate required block size β for a given root-Hermite factor δ based on [PhD:Chen13]_.
:param delta: Root-Hermite factor.
EXAMPLE::
>>> from estimator.reduction import ReductionCost
>>> ReductionCost._beta_secant(1.0121)
50
>>> ReductionCost._beta_secant(1.0093)
100
>>> ReductionCost._beta_secant(1.0024) # Chen reports 800
808
"""
# newton() will produce a "warning", if two subsequent function values are
# indistinguishable (i.e. equal in terms of machine precision). In this case
# newton() will return the value beta in the middle between the two values
# k1,k2 for which the function values were indistinguishable.
# Since f approaches zero for beta->+Infinity, this may be the case for very
# large inputs, like beta=1e16.
# For now, these warnings just get printed and the value beta is used anyways.
# This seems reasonable, since for such large inputs the exact value of beta
# doesn't make such a big difference.
try:
beta = newton(
lambda beta: RR(ReductionCost._delta(beta) - delta),
100,
fprime=None,
args=(),
tol=1.48e-08,
maxiter=500,
)
beta = ceil(beta)
if beta < 40:
# newton may output beta < 40. The old beta method wouldn't do this. For
# consistency, call the old beta method, i.e. consider this try as "failed".
raise RuntimeError("β < 40")
return beta
except (RuntimeError, TypeError):
# if something fails, use old beta method
beta = ReductionCost._beta_simple(delta)
return beta
@staticmethod
def _beta_find_root(delta):
"""
Estimate required block size β for a given root-Hermite factor δ based on [PhD:Chen13]_.
:param delta: Root-Hermite factor.
TESTS::
>>> from estimator.reduction import ReductionCost, RC
>>> ReductionCost._beta_find_root(RC.delta(500))
500
"""
# handle beta < 40 separately
beta = ZZ(40)
if ReductionCost._delta(beta) < delta:
return beta
try:
beta = find_root(
lambda beta: RR(ReductionCost._delta(beta) - delta), 40, 2**16, maxiter=500
)
beta = ceil(beta - 1e-8)
except RuntimeError:
# finding root failed; reasons:
# 1. maxiter not sufficient
# 2. no root in given interval
beta = ReductionCost._beta_simple(delta)
return beta
@staticmethod
def _beta_simple(delta):
"""
Estimate required block size β for a given root-Hermite factor δ based on [PhD:Chen13]_.
:param delta: Root-Hermite factor.
TESTS::
>>> from estimator.reduction import ReductionCost, RC
>>> ReductionCost._beta_simple(RC.delta(500))
501
"""
beta = ZZ(40)
while ReductionCost._delta(2 * beta) > delta:
beta *= 2
while ReductionCost._delta(beta + 10) > delta:
beta += 10
while ReductionCost._delta(beta) >= delta:
beta += 1
return beta
[docs] def beta(delta):
"""
Estimate required block size β for a given root-hermite factor δ based on [PhD:Chen13]_.
:param delta: Root-hermite factor.
EXAMPLE::
>>> from estimator.reduction import RC
>>> 50 == RC.beta(1.0121)
True
>>> 100 == RC.beta(1.0093)
True
>>> RC.beta(1.0024) # Chen reports 800
808
"""
# TODO: decide for one strategy (secant, find_root, old) and its error handling
beta = ReductionCost._beta_find_root(delta)
return beta
[docs] @classmethod
def svp_repeat(cls, beta, d):
"""
Return number of SVP calls in BKZ-β.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
.. note :: Loosely based on experiments in [PhD:Chen13].
.. note :: When d ≤ β we return 1.
"""
if beta < d:
return 8 * d
else:
return 1
[docs] @classmethod
def LLL(cls, d, B=None):
"""
Runtime estimation for LLL algorithm based on [AC:CheNgu11]_.
:param d: Lattice dimension.
:param B: Bit-size of entries.
"""
if B is None:
return d**3 # ignoring B for backward compatibility
else:
return d**3 * B**2
[docs] def short_vectors(self, beta, d, N=None, B=None, preprocess=True):
"""
Cost of outputting many somewhat short vectors.
The output of this function is a tuple of four values:
- `ρ` is a scaling factor. The output vectors are expected to be longer than the shortest
vector expected from an SVP oracle by this factor.
- `c` is the cost of outputting `N` vectors
- `N` the number of vectors output, which may be larger than the value put in for `N`.
- `β'` the cost parameter associated with sampling, here: 2
This baseline implementation uses rerandomize+LLL as in [EC:Albrecht17]_.
:param beta: Cost parameter (≈ SVP dimension).
:param d: Lattice dimension.
:param N: Number of vectors requested.
:param B: Bit-size of entries.
:param preprocess: Include the cost of preprocessing the basis with BKZ-β.
If ``False`` we assume the basis is already BKZ-β reduced.
:returns: ``(ρ, c, N)``
EXAMPLES::
>>> from estimator.reduction import RC
>>> RC.CheNgu12.short_vectors(100, 500, N=1)
(1.0, 1.67646...e17, 1, 2)
>>> RC.CheNgu12.short_vectors(100, 500, N=1, preprocess=False)
(1.0, 1, 1, 2)
>>> RC.CheNgu12.short_vectors(100, 500)
(2.0, 1.67646...e17, 1000, 2)
>>> RC.CheNgu12.short_vectors(100, 500, preprocess=False)
(2.0, 125000000000, 1000, 2)
>>> RC.CheNgu12.short_vectors(100, 500, N=1000)
(2.0, 1.67646...e17, 1000, 2)
>>> RC.CheNgu12.short_vectors(100, 500, N=1000, preprocess=False)
(2.0, 125000000000, 1000, 2)
"""
if preprocess:
cost = self(beta, d, B=B)
else:
cost = 0
if N == 1: # just call SVP
return 1.0, cost + 1, 1, 2
elif N is None:
N = 1000 # pick something
return 2.0, cost + N * RC.LLL(d), N, 2
[docs] def short_vectors_simple(self, beta, d, N=None, B=None, preprocess=True):
"""
Cost of outputting many somewhat short vectors.
The output of this function is a tuple of four values:
- `ρ` is a scaling factor. The output vectors are expected to be longer than the shortest
vector expected from an SVP oracle by this factor.
- `c` is the cost of outputting `N` vectors
- `N` the number of vectors output, which may be larger than the value put in for `N`.
- `β'` the cost parameter associated with sampling, here: `β`
This naive baseline implementation uses rerandomize+BKZ.
:param beta: Cost parameter (≈ SVP dimension).
:param d: Lattice dimension.
:param N: Number of vectors requested.
:param B: Bit-size of entries.
:param preprocess: This option is ignore.
:returns: ``(ρ, c, N)``
EXAMPLES::
>>> from estimator.reduction import RC
>>> RC.CheNgu12.short_vectors_simple(100, 500, 1)
(1.0, 1.67646160799173e17, 1, 100)
>>> RC.CheNgu12.short_vectors_simple(100, 500)
(1.0, 1.67646160799173e20, 1000, 100)
>>> RC.CheNgu12.short_vectors_simple(100, 500, 1000)
(1.0, 1.67646160799173e20, 1000, 100)
"""
if N == 1:
if preprocess:
return 1.0, self(beta, d, B=B), 1, beta
else:
return 1.0, 1, 1, beta
elif N is None:
N = 1000 # pick something
return 1.0, N * self(beta, d, B=B), N, beta
def _short_vectors_sieve(self, beta, d, N=None, B=None, preprocess=True, sieve_dim=None):
"""
Cost of outputting many somewhat short vectors.
The output of this function is a tuple of four values:
- `ρ` is a scaling factor. The output vectors are expected to be longer than the shortest
vector expected from an SVP oracle by this factor.
- `c` is the cost of outputting `N` vectors
- `N` the number of vectors output, which may be larger than the value put in for `N`.
- `β'` the cost parameter associated with sampling, here: `β` or ``sieve_dim``
This implementation uses that a sieve outputs many somehwat short vectors [Kyber17]_.
:param beta: Cost parameter (≈ SVP dimension).
:param d: Lattice dimension.
:param N: Number of vectors requested.
:param B: Bit-size of entries.
:param preprocess: Include the cost of preprocessing the basis with BKZ-β.
If ``False`` we assume the basis is already BKZ-β reduced.
:param sieve_dim: Explicit sieving dimension.
:returns: ``(ρ, c, N)``
EXAMPLES::
>>> from estimator.reduction import RC
>>> RC.ADPS16.short_vectors(100, 500, 1)
(1.0, 6.16702733460158e8, 1, 100)
>>> RC.ADPS16.short_vectors(100, 500)
(1.1547..., 6.16702733460158e8, 1763487, 100)
>>> RC.ADPS16.short_vectors(100, 500, 1000)
(1.1547..., 6.16702733460158e8, 1763487, 100)
"""
if sieve_dim is None:
sieve_dim = beta
if N == 1:
if preprocess:
return 1.0, self(beta, d, B=B), 1, sieve_dim
else:
return 1.0, 1, 1, sieve_dim
elif N is None:
N = floor(2 ** (0.2075 * beta)) # pick something
c = N / floor(2 ** (0.2075 * beta))
rho = sqrt(4 / 3.0) * RR(
self.delta(sieve_dim) ** (sieve_dim - 1) * self.delta(beta) ** (1 - sieve_dim)
)
return (
rho,
ceil(c) * self(beta, d),
ceil(c) * floor(2 ** (0.2075 * beta)),
sieve_dim,
)
[docs]class BDGL16(ReductionCost):
__name__ = "BDGL16"
short_vectors = ReductionCost._short_vectors_sieve
@classmethod
def _small(cls, beta, d, B=None):
"""
Runtime estimation given β and assuming sieving is used to realise the SVP oracle for small
dimensions following [SODA:BDGL16]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
TESTS::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.BDGL16._small(500, 1024), 2.0)
222.9
"""
return cls.LLL(d, B) + ZZ(2) ** RR(0.387 * beta + 16.4 + log(cls.svp_repeat(beta, d), 2))
@classmethod
def _asymptotic(cls, beta, d, B=None):
"""
Runtime estimation given `β` and assuming sieving is used to realise the SVP oracle following [SODA:BDGL16]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
TESTS::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.BDGL16._asymptotic(500, 1024), 2.0)
175.4
"""
# TODO we simply pick the same additive constant 16.4 as for the experimental result in [SODA:BDGL16]_
return cls.LLL(d, B) + ZZ(2) ** RR(0.292 * beta + 16.4 + log(cls.svp_repeat(beta, d), 2))
[docs] def __call__(self, beta, d, B=None):
"""
Runtime estimation given `β` and assuming sieving is used to realise the SVP oracle following [SODA:BDGL16]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.BDGL16(500, 1024), 2.0)
175.4
"""
# TODO this is somewhat arbitrary
if beta <= 90:
return self._small(beta, d, B)
else:
return self._asymptotic(beta, d, B)
[docs]class LaaMosPol14(ReductionCost):
__name__ = "LaaMosPol14"
short_vectors = ReductionCost._short_vectors_sieve
[docs] def __call__(self, beta, d, B=None):
"""
Runtime estimation for quantum sieving following [EPRINT:LaaMosPol14]_ and [PhD:Laarhoven15]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.LaaMosPol14(500, 1024), 2.0)
161.9
"""
return self.LLL(d, B) + ZZ(2) ** RR(
(0.265 * beta + 16.4 + log(self.svp_repeat(beta, d), 2))
)
[docs]class CheNgu12(ReductionCost):
__name__ = "CheNgu12"
[docs] def __call__(self, beta, d, B=None):
"""
Runtime estimation given β and assuming [CheNgu12]_ estimates are correct.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
The constants in this function were derived as follows based on Table 4 in
[CheNgu12]_::
>>> from sage.all import var, find_fit
>>> dim = [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250]
>>> nodes = [39.0, 44.0, 49.0, 54.0, 60.0, 66.0, 72.0, 78.0, 84.0, 96.0, \
99.0, 105.0, 111.0, 120.0, 127.0, 134.0]
>>> times = [c + log(200,2).n() for c in nodes]
>>> T = list(zip(dim, nodes))
>>> var("a,b,c,beta")
(a, b, c, beta)
>>> f = a*beta*log(beta, 2.0) + b*beta + c
>>> f = f.function(beta)
>>> f.subs(find_fit(T, f, solution_dict=True))
beta |--> 0.2701...*beta*log(beta) - 1.0192...*beta + 16.10...
The estimation 2^(0.18728 β⋅log_2(β) - 1.019⋅β + 16.10) is of the number of enumeration
nodes, hence we need to multiply by the number of cycles to process one node. This cost per
node is typically estimated as 64.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.CheNgu12(500, 1024), 2.0)
365.70...
"""
repeat = self.svp_repeat(beta, d)
cost = RR(
0.270188776350190 * beta * log(beta)
- 1.0192050451318417 * beta
+ 16.10253135200765
+ log(100, 2)
)
return self.LLL(d, B) + repeat * ZZ(2) ** cost
[docs]class ABFKSW20(ReductionCost):
__name__ = "ABFKSW20"
[docs] def __call__(self, beta, d, B=None):
"""
Enumeration cost according to [C:ABFKSW20]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.ABFKSW20(500, 1024), 2.0)
316.26...
"""
if 1.5 * beta >= d or beta <= 92: # 1.5β is a bit arbitrary, β≤92 is the crossover point
cost = RR(0.1839 * beta * log(beta, 2) - 0.995 * beta + 16.25 + log(64, 2))
else:
cost = RR(0.125 * beta * log(beta, 2) - 0.547 * beta + 10.4 + log(64, 2))
repeat = self.svp_repeat(beta, d)
return self.LLL(d, B) + repeat * ZZ(2) ** cost
[docs]class ABLR21(ReductionCost):
__name__ = "ABLR21"
[docs] def __call__(self, beta, d, B=None):
"""
Enumeration cost according to [C:ABLR21]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC
>>> log(RC.ABLR21(500, 1024), 2.0)
278.20...
"""
if 1.5 * beta >= d or beta <= 97: # 1.5β is a bit arbitrary, 97 is the crossover
cost = RR(0.1839 * beta * log(beta, 2) - 1.077 * beta + 29.12 + log(64, 2))
else:
cost = RR(0.1250 * beta * log(beta, 2) - 0.654 * beta + 25.84 + log(64, 2))
repeat = self.svp_repeat(beta, d)
return self.LLL(d, B) + repeat * ZZ(2) ** cost
[docs]class ADPS16(ReductionCost):
__name__ = "ADPS16"
short_vectors = ReductionCost._short_vectors_sieve
[docs] def __init__(self, mode="classical"):
if mode not in ("classical", "quantum", "paranoid"):
raise ValueError(f"Mode {mode} not understood.")
self.mode = mode
[docs] def __call__(self, beta, d, B=None):
"""
Runtime estimation from [USENIX:ADPS16]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC, ADPS16
>>> log(RC.ADPS16(500, 1024), 2.0)
146.0
>>> log(ADPS16(mode="quantum")(500, 1024), 2.0)
132.5
>>> log(ADPS16(mode="paranoid")(500, 1024), 2.0)
103.75
"""
c = {
"classical": 0.2920,
"quantum": 0.2650, # paper writes 0.262 but this isn't right, see above
"paranoid": 0.2075,
}
c = c[self.mode]
return ZZ(2) ** RR(c * beta)
[docs]class Kyber(ReductionCost):
__name__ = "Kyber"
# These are not asymptotic expressions but compress the data in [AC:AGPS20]_ which covers up to
# β = 1024
# import glob
# import pandas
# var("a,b,d")
# f = (a*d + b).function(d)
# for filename in sorted(glob.glob("data/cost-estimate-*.csv")):
# if "sieve_size" in filename:
# continue
# costs = list(pandas.read_csv(filename)[["d", "log_cost"]].itertuples(index=False, name=None))
# key = filename.replace("data/cost-estimate-","").replace(".csv", "")
# values = find_fit(costs, f, solution_dict=True)
# print(f"\"{key}\": {{\"a\": {values[a]}, \"b\": {values[b]}}},")
NN_AGPS = {
"all_pairs-classical": {"a": 0.4215069316613415, "b": 20.1669683097337},
"all_pairs-dw": {"a": 0.3171724396445732, "b": 25.29828951733785},
"all_pairs-g": {"a": 0.3155285835002801, "b": 22.478746811528048},
"all_pairs-ge19": {"a": 0.3222895263943544, "b": 36.11746438609666},
"all_pairs-naive_classical": {"a": 0.4186251294633655, "b": 9.899382654377058},
"all_pairs-naive_quantum": {"a": 0.31401512556555794, "b": 7.694659515948326},
"all_pairs-t_count": {"a": 0.31553282515234704, "b": 20.878594142502994},
"list_decoding-classical": {"a": 0.2988026130564745, "b": 26.011121212891872},
"list_decoding-dw": {"a": 0.26944796385592995, "b": 28.97237346443934},
"list_decoding-g": {"a": 0.26937450988892553, "b": 26.925140365395972},
"list_decoding-ge19": {"a": 0.2695210400018704, "b": 35.47132142280775},
"list_decoding-naive_classical": {"a": 0.2973130399197453, "b": 21.142124058689426},
"list_decoding-naive_quantum": {"a": 0.2674316807758961, "b": 18.720680589028465},
"list_decoding-t_count": {"a": 0.26945736714156543, "b": 25.913746774011887},
"random_buckets-classical": {"a": 0.35586144233444716, "b": 23.082527816636638},
"random_buckets-dw": {"a": 0.30704199612690264, "b": 25.581968903639485},
"random_buckets-g": {"a": 0.30610964725102385, "b": 22.928235564044563},
"random_buckets-ge19": {"a": 0.31089687599538407, "b": 36.02129978813208},
"random_buckets-naive_classical": {"a": 0.35448283789554513, "b": 15.28878540793908},
"random_buckets-naive_quantum": {"a": 0.30211421791887644, "b": 11.151745013027089},
"random_buckets-t_count": {"a": 0.30614770082829745, "b": 21.41830142853265},
}
[docs] def __init__(self, nn="classical"):
"""
:param nn: Nearest neighbor cost model. We default to "ListDecoding" (i.e. BDGL16) and to
the "depth × width" metric. Kyber uses "AllPairs".
"""
if nn == "classical":
nn = "list_decoding-classical"
elif nn == "quantum":
nn = "list_decoding-dw"
self.nn = nn
[docs] @staticmethod
def d4f(beta):
"""
Dimensions "for free" following [EC:Ducas18]_.
:param beta: Block size ≥ 2.
If β' is output by this function then sieving is expected to be required up to dimension β-β'.
EXAMPLE::
>>> from estimator.reduction import RC
>>> RC.Kyber.d4f(500)
42.597...
"""
return max(float(beta * log(4 / 3.0) / log(beta / (2 * pi * e))), 0.0)
[docs] def __call__(self, beta, d, B=None, C=5.46):
"""
Runtime estimation from [Kyber20]_ and [AC:AGPS20]_.
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
:param C: Progressive overhead lim_{β → ∞} ∑_{i ≤ β} 2^{0.292 i + o(i)}/2^{0.292 β + o(β)}.
EXAMPLE::
>>> from math import log
>>> from estimator.reduction import RC, Kyber
>>> log(RC.Kyber(500, 1024), 2.0)
176.61534319964488
>>> log(Kyber(nn="list_decoding-ge19")(500, 1024), 2.0)
172.68208507350872
"""
if beta < 20: # goes haywire
return CheNgu12()(beta, d, B)
# "The cost of progressive BKZ with sieving up to blocksize b is essentially C · (n − b) ≈
# 3340 times the cost of sieving for SVP in dimension b." [Kyber20]_
svp_calls = C * max(d - beta, 1)
# we do not round to the nearest integer to ensure cost is continuously increasing with β which
# rounding can violate.
beta_ = beta - self.d4f(beta)
# "The work in [5] is motivated by the quantum/classical speed-up, therefore it does not
# consider the required number of calls to AllPairSearch. Naive sieving requires a
# polynomial number of calls to this routine, however this number of calls appears rather
# small in practice using progressive sieving [40, 64], and we will assume that it needs to
# be called only once per dimension during progressive sieving, for a cost of C · 2^137.4
# gates^8." [Kyber20]_
gate_count = C * 2 ** (
RR(self.NN_AGPS[self.nn]["a"]) * beta_ + RR(self.NN_AGPS[self.nn]["b"])
)
return self.LLL(d, B=B) + svp_calls * gate_count
[docs] def short_vectors(self, beta, d, N=None, B=None, preprocess=True):
"""
Cost of outputting many somewhat short vectors using BKZ-β.
The output of this function is a tuple of four values:
- `ρ` is a scaling factor. The output vectors are expected to be longer than the shortest
vector expected from an SVP oracle by this factor.
- `c` is the cost of outputting `N` vectors
- `N` the number of vectors output, which may be larger than the value put in for `N`.
This is using an observation insprired by [AC:GuoJoh21]_ that we can run a sieve on the
first block of the basis with negligible overhead.
:param beta: Cost parameter (≈ SVP dimension).
:param d: Lattice dimension.
:param N: Number of vectors requested.
:param preprocess: Include the cost of preprocessing the basis with BKZ-β.
If ``False`` we assume the basis is already BKZ-β reduced.
EXAMPLES::
>>> from estimator.reduction import RC
>>> RC.Kyber.short_vectors(100, 500, 1)
(1.0, 2.7367476128136...19, 100)
>>> RC.Kyber.short_vectors(100, 500)
(1.1547, 2.7367476128136...19, 176584)
>>> RC.Kyber.short_vectors(100, 500, 1000)
(1.1547, 2.7367476128136...19, 176584)
"""
beta_ = beta - floor(self.d4f(beta))
if N == 1:
if preprocess:
return 1.0, self(beta, d, B=B), beta
else:
return 1.0, 1, beta
elif N is None:
N = floor(2 ** (0.2075 * beta_)) # pick something
c = N / floor(2 ** (0.2075 * beta_))
return 1.1547, ceil(c) * self(beta, d), ceil(c) * floor(2 ** (0.2075 * beta_))
[docs]class GJ21(Kyber):
__name__ = "GJ21"
[docs] def short_vectors(self, beta, d, N=None, preprocess=True, B=None, C=5.46, sieve_dim=None):
"""
Cost of outputting many somewhat short vectors according to [AC:GuoJoh21]_.
The output of this function is a tuple of four values:
- `ρ` is a scaling factor. The output vectors are expected to be longer than the shortest
vector expected from an SVP oracle by this factor.
- `c` is the cost of outputting `N` vectors
- `N` the number of vectors output, which may be larger than the value put in for `N`.
- `β'` the cost parameter associated with sampling
This runs a sieve on the first β_0 vectors of the basis after BKZ-β reduction
to produce many short vectors, where β_0 is chosen such that BKZ-β reduction and the sieve
run in approximately the same time. [AC:GuoJoh21]_
:param beta: Cost parameter (≈ SVP dimension).
:param d: Lattice dimension.
:param N: Number of vectors requested.
:param preprocess: Include the cost of preprocessing the basis with BKZ-β.
If ``False`` we assume the basis is already BKZ-β reduced.
:param B: Bit-size of entries.
:param C: Progressive overhead lim_{β → ∞} ∑_{i ≤ β} 2^{0.292 i + o(i)}/2^{0.292 β + o(β)}.
:param sieve_dim: Explicit sieving dimension.
EXAMPLES::
>>> from estimator.reduction import RC
>>> RC.GJ21.short_vectors(100, 500, 1)
(1.0, 2.7367476128136...19, 1, 100)
>>> RC.GJ21.short_vectors(100, 500)
(1.04228014727497, 5.56224438...19, 36150192, 121)
>>> RC.GJ21.short_vectors(100, 500, 1000)
(1.04228014727497, 5.56224438...19, 36150192, 121)
"""
beta_ = beta - floor(self.d4f(beta))
if sieve_dim is None:
sieve_dim = beta_
if beta < d:
# set beta_sieve such that complexity of 1 sieve in in dim sieve_dim is approx
# the same as the BKZ call
sieve_dim = min(
d, floor(beta_ + log((d - beta) * C, 2) / self.NN_AGPS[self.nn]["a"])
)
# MATZOV, p.18
rho = sqrt(4 / 3.0) * RR(
self.delta(sieve_dim) ** (sieve_dim - 1) * self.delta(beta) ** (1 - sieve_dim)
)
if N == 1:
if preprocess:
return 1.0, self(beta, d, B=B), 1, beta
else:
return 1.0, 1, 1, beta
elif N is None:
N = floor(2 ** (0.2075 * sieve_dim)) # pick something
c = N / floor(2 ** (0.2075 * sieve_dim))
sieve_cost = C * 2 ** (self.NN_AGPS[self.nn]["a"] * sieve_dim + self.NN_AGPS[self.nn]["b"])
return (
rho,
ceil(c) * (self(beta, d) + sieve_cost),
ceil(c) * floor(2 ** (0.2075 * sieve_dim)),
sieve_dim,
)
[docs]class MATZOV(GJ21):
"""
Improved enumeration routine in list decoding from [MATZOV22]_.
"""
__name__ = "MATZOV"
# These are not asymptotic expressions but compress the data in [AC:AGPS20]_ with the fix and
# improvement from [MATZOV22]_ applied which covers up to β = 1024
NN_AGPS = {
"all_pairs-classical": {"a": 0.4215069316732438, "b": 20.166968300536567},
"all_pairs-dw": {"a": 0.3171724396445733, "b": 25.2982895173379},
"all_pairs-g": {"a": 0.31552858350028, "b": 22.478746811528104},
"all_pairs-ge19": {"a": 0.3222895263943547, "b": 36.11746438609664},
"all_pairs-naive_classical": {"a": 0.41862512941897706, "b": 9.899382685790897},
"all_pairs-naive_quantum": {"a": 0.31401512571180035, "b": 7.694659414353819},
"all_pairs-t_count": {"a": 0.31553282513562797, "b": 20.87859415484879},
"list_decoding-classical": {"a": 0.29613500308205365, "b": 20.387885985467914},
"list_decoding-dw": {"a": 0.2663676536352464, "b": 25.299541499216627},
"list_decoding-g": {"a": 0.26600114174341505, "b": 23.440974518186337},
"list_decoding-ge19": {"a": 0.26799889622667994, "b": 30.839871638418543},
"list_decoding-naive_classical": {"a": 0.29371310617068064, "b": 15.930690682515422},
"list_decoding-naive_quantum": {"a": 0.2632557273632713, "b": 15.685687713591548},
"list_decoding-t_count": {"a": 0.2660264010780807, "b": 22.432158856991474},
"random_buckets-classical": {"a": 0.3558614423344473, "b": 23.08252781663665},
"random_buckets-dw": {"a": 0.30704199602260734, "b": 25.58196897625173},
"random_buckets-g": {"a": 0.30610964725102396, "b": 22.928235564044588},
"random_buckets-ge19": {"a": 0.31089687605567917, "b": 36.02129974535213},
"random_buckets-naive_classical": {"a": 0.35448283789554536, "b": 15.28878540793911},
"random_buckets-naive_quantum": {"a": 0.3021142178390157, "b": 11.151745066682524},
"random_buckets-t_count": {"a": 0.3061477007403873, "b": 21.418301489775203},
}
[docs]def cost(cost_model, beta, d, B=None, predicate=True, **kwds):
"""
Return cost dictionary for computing vector of norm` δ_0^{d-1} Vol(Λ)^{1/d}` using provided lattice
reduction algorithm.
:param cost_model:
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit-size of entries.
:param predicate: if ``False`` cost will be infinity.
EXAMPLE::
>>> from estimator.reduction import cost, RC
>>> cost(RC.ABLR21, 120, 500)
rop: ≈2^68.9, red: ≈2^68.9, δ: 1.008435, β: 120, d: 500
>>> cost(RC.ABLR21, 120, 500, predicate=False)
rop: ≈2^inf, red: ≈2^inf, δ: 1.008435, β: 120, d: 500
"""
# convenience: instantiate static classes if needed
if isinstance(cost_model, type):
cost_model = cost_model()
cost = cost_model(beta, d, B)
delta_ = ReductionCost.delta(beta)
cost = Cost(rop=cost, red=cost, delta=delta_, beta=beta, d=d, **kwds)
cost.register_impermanent(rop=True, red=True, delta=False, beta=False, d=False)
if predicate is False:
cost["red"] = oo
cost["rop"] = oo
return cost
beta = ReductionCost.beta
delta = ReductionCost.delta
[docs]class RC:
beta = ReductionCost.beta
delta = ReductionCost.delta
LLL = ReductionCost.LLL
ABFKSW20 = ABFKSW20()
ABLR21 = ABLR21()
ADPS16 = ADPS16()
BDGL16 = BDGL16()
CheNgu12 = CheNgu12()
Kyber = Kyber()
MATZOV = MATZOV()
GJ21 = GJ21()
LaaMosPol14 = LaaMosPol14()