estimator.util.local_minimum_base
estimator.util.local_minimum_base#
- class estimator.util.local_minimum_base(start, stop, smallerf=<function local_minimum_base.<lambda>>, suppress_bounds_warning=False, log_level=5)[source]#
An iterator context for finding a local minimum using binary search.
We use the immediate neighborhood of a point to decide the next direction to go into (gradient descent style), so the algorithm is not plain binary search (see
update()
function.)Note
We combine an iterator and a context to give the caller access to the result.
Create a fresh local minimum search context.
- Parameters
start – starting point
stop – end point (exclusive)
smallerf – a function to decide if
lhs
is smaller thanrhs
.suppress_bounds_warning – do not warn if a boundary is picked as optimal
- __call__(**kwargs)#
Call self as a function.
Methods
__init__
(start, stop[, smallerf, ...])Create a fresh local minimum search context.
update
(res)TESTS:
Attributes