# -*- coding: utf-8 -*-
from sage.all import binomial, ZZ, log, ceil, RealField, oo, exp, pi
from sage.all import RealDistribution, RR, sqrt, prod, erf
from .nd import sigmaf
from .conf import max_n_cache
chisquared_table = {i: None for i in range(2*max_n_cache+1)}
for i in range(2*max_n_cache+1):
chisquared_table[i] = RealDistribution('chisquared', i)
[docs]
def conditional_chi_squared(d1, d2, lt, l2):
"""
Probability that a gaussian sample (var=1) of dim d1+d2 has length at most
lt knowing that the d2 first coordinates have length at most l2
:param d1: Dimension of non length-bounded coordinates
:param d2: Dimension of length-bounded coordinates
:param lt: Length threshold (maximum length of whole vector)
:param l2: Length threshold for the first d2 coordinates.
EXAMPLE::
>>> from estimator import prob
>>> prob.conditional_chi_squared(100, 5, 105, 1)
0.6358492948586715
>>> prob.conditional_chi_squared(100, 5, 105, 5)
0.5764336909205551
>>> prob.conditional_chi_squared(100, 5, 105, 10)
0.5351747076352109
>>> prob.conditional_chi_squared(100, 5, 50, 10)
1.1707597206287592e-06
>>> prob.conditional_chi_squared(100, 5, 50, .7)
5.4021875103989546e-06
"""
D1 = chisquared_table[d1].cum_distribution_function
D2 = chisquared_table[d2].cum_distribution_function
l2 = RR(l2)
PE2 = D2(l2)
# In large dim, we can get underflow leading to NaN
# When this happens, assume lifting is successfully (underestimating security)
if PE2==0:
raise ValueError("Numerical underflow in conditional_chi_squared")
steps = 5 * (d1 + d2)
# Numerical computation of the integral
proba = 0.
for i in range(steps)[::-1]:
l2_min = i * l2 / steps
l2_mid = (i + .5) * l2 / steps
l2_max = (i + 1) * l2 / steps
PC2 = (D2(l2_max) - D2(l2_min)) / PE2
PE1 = D1(lt - l2_mid)
proba += PC2 * PE1
return proba
[docs]
def gaussian_cdf(mu, sigma, t):
"""
Compute the cdf of a continuous gaussian random variable with mean mu and standard deviation
sigma (i.e. computes Pr(X <= t), where X is a gaussian random variable).
:params mu: the mean of the gaussian random variable.
:params sigma: the standard deviation of the gaussian random variable.
:params t: the limit at which to calculate the cdf.
:returns: the evaluation of the cdf at t.
"""
return RR((1/2)*(1 + erf((t - mu)/(sqrt(2)*sigma))))
[docs]
def mitm_babai_probability(r, stddev, q, fast=False):
"""
Compute the "e-admissibility" probability associated to the mitm step, according to
[EPRINT:SonChe19]_
:params r: the squared GSO lengths
:params stddev: the std.dev of the error distribution
:params q: the LWE modulus
:param fast: toggle for setting p = 1 (faster, but underestimates security)
:return: probability for the mitm process
# NOTE: the model sometimes outputs negative probabilities, we set p = 0 in this case
"""
if fast:
# overestimate the probability -> underestimate security
return 1
# get non-squared norms
alphaq = sigmaf(stddev)
probs = (
RR(
erf(s * sqrt(RR(pi)) / alphaq)
+ (alphaq / s) * ((exp(-s * sqrt(RR(pi)) / alphaq) - 1) / RR(pi))
)
for s in map(sqrt, r)
)
p = RR(prod(probs))
return p if 0 <= p <= 1 else 0.0
[docs]
def babai(r, norm):
"""
Babai probability following [EPRINT:Wun16]_.
"""
denom = float(2 * norm) ** 2
T = RealDistribution("beta", ((len(r) - 1) / 2, 1.0 / 2))
probs = [1 - T.cum_distribution_function(1 - r_ / denom) for r_ in r]
return prod(probs)
[docs]
def drop(n, h, k, fail=0, rotations=False):
"""
Probability that ``k`` randomly sampled components have ``fail`` non-zero components amongst
them.
:param n: LWE dimension `n > 0`
:param h: number of non-zero components
:param k: number of components to ignore
:param fail: we tolerate ``fail`` number of non-zero components amongst the `k` ignored
components
:param rotations: consider rotations of the basis to exploit ring structure (NTRU only)
"""
N = n # population size
K = n - h # number of success states in the population
n = k # number of draws
k = n - fail # number of observed successes
prob_drop = binomial(K, k) * binomial(N - K, n - k) / binomial(N, n)
if rotations:
return 1 - (1 - prob_drop) ** N
else:
return prob_drop
[docs]
def amplify(target_success_probability, success_probability, majority=False):
"""
Return the number of trials needed to amplify current `success_probability` to
`target_success_probability`
:param target_success_probability: targeted success probability < 1
:param success_probability: targeted success probability < 1
:param majority: if `True` amplify a decisional problem, not a computational one
if `False` then we assume that we can check solutions, so one success suffices
:returns: number of required trials to amplify
"""
if target_success_probability < success_probability:
return ZZ(1)
if success_probability == 0.0:
return oo
prec = max(
53,
2 * ceil(abs(float(log(success_probability, 2)))),
2 * ceil(abs(float(log(1 - success_probability, 2)))),
2 * ceil(abs(float(log(target_success_probability, 2)))),
2 * ceil(abs(float(log(1 - target_success_probability, 2)))),
)
prec = min(prec, 2048)
RR = RealField(prec)
success_probability = RR(success_probability)
target_success_probability = RR(target_success_probability)
try:
if majority:
eps = success_probability / 2
return ceil(2 * log(2 - 2 * target_success_probability) / log(1 - 4 * eps**2))
else:
# target_success_probability = 1 - (1-success_probability)^trials
return ceil(log(1 - target_success_probability) / log(1 - success_probability))
except ValueError:
return oo
[docs]
def amplify_sigma(target_advantage, sigma, q):
"""
Amplify distinguishing advantage for a given σ and q
:param target_advantage:
:param sigma: (Lists of) Gaussian width parameters
:param q: Modulus q > 0
"""
try:
sigma = sum(sigma_**2 for sigma_ in sigma).sqrt()
except TypeError:
pass
if sigma > 16 * q:
return oo
advantage = float(exp(-float(pi) * (float(sigma / q) ** 2)))
return amplify(target_advantage, advantage, majority=True)