Source code for estimator.ntru_parameters

# -*- coding: utf-8 -*-
from dataclasses import dataclass

from .conf import ntru_fatigue_lb
from .errors import InsufficientSamplesError
from .lwe_parameters import LWEParameters


[docs] @dataclass class NTRUParameters(LWEParameters): """The parameters for an NTRU problem instance. The estimator treats regular NTRU parameters as similar to LWE, but requires different estimation methodology for overstrethed parameters. :param ntru_type: Specifies the type of NTRU instance the parameters represent. Currently supported types are, "matrix" for general matrix NTRU, "circulant" for circulant NTRU, "fixed" for circulant NTRU with a fixed geometry. """ ntru_type: str = "matrix" def __post_init__(self, **kwds): super().__post_init__() # set m = n self.m = self.n @property def possibly_overstretched(self): if self.q >= ntru_fatigue_lb(self.n): return True return False @property def _homogeneous(self): return True
[docs] def normalize(self): """ EXAMPLES: We perform the normal form transformation if χ_e < χ_s and we got the samples:: For NTRU, m = n so we swap the secret and the noise:: >>> from estimator import * >>> Xs=ND.DiscreteGaussian(2.0) >>> Xe=ND.DiscreteGaussian(1.58) >>> NTRU.Parameters(n=512, q=8192, Xs=Xs, Xe=Xe, m=512).normalize() NTRUParameters(n=512, q=8192, Xs=D(σ=1.58), Xe=D(σ=2.00), m=512, tag=None, ntru_type='matrix') """ if self.m < 1: raise InsufficientSamplesError(f"m={self.m} < 1") # swap secret and noise # TODO: this is somewhat arbitrary if self.Xe < self.Xs and self.m < 2 * self.n: return NTRUParameters(n=self.n, q=self.q, Xs=self.Xe, Xe=self.Xs, m=self.n, tag=self.tag, ntru_type=self.ntru_type) # nothing to do return self
[docs] def updated(self, **kwds): """ Return a new set of parameters updated according to ``kwds``. :param kwds: We set ``key`` to ``value`` in the new set of parameters. EXAMPLE:: >>> from estimator import * >>> schemes.NTRUHPS2048509Enc NTRUParameters(n=508, q=2048, Xs=D(σ=0.82), Xe=T(p=127, m=127, n=508), m=508, ... >>> schemes.NTRUHPS2048509Enc.possibly_overstretched False >>> schemes.NTRUHPS2048509Enc.updated(q=16536) NTRUParameters(n=508, q=16536, Xs=D(σ=0.82), Xe=T(p=127, m=127, n=508), m=508, ... >>> schemes.NTRUHPS2048509Enc.updated(q=16536).possibly_overstretched True """ d = dict(self.__dict__) d.update(kwds) return NTRUParameters(**d)
[docs] def amplify_m(self, m): """ Return an NTRU instance parameters with ``m`` samples produced from the samples in this instance. :param m: New number of samples. """ raise NotImplementedError("Rerandomizing NTRU instances is not supported yet.")
[docs] def switch_modulus(self): """ Apply modulus switching and return new instance. See [JMC:AlbPlaSco15]_ for details. """ raise NotImplementedError("Modulus Switching for NTRU not supported yet.")
def __hash__(self): return hash((self.n, self.q, self.Xs, self.Xe, self.m, self.tag, self.ntru_type))