.. _Arora-GB: Arora-GB ======== We construct an (easy) example LWE instance and estimate the cost of solving it using Gröbner bases as described in [ICALP:AroGe11]_, [EPRINT:ACFP14]_:: from estimator import * params = LWE.Parameters(n=64, q=7681, Xs=ND.DiscreteGaussian(3.0), Xe=ND.DiscreteGaussian(3.0), m=2^50) LWE.arora_gb(params) The cost of this approach – Arora-GB – depends on the number of samples:: LWE.arora_gb(params.updated(m=2^120)) If the noise distribution is bounded, this bounds the absolute degree and thus cost:: LWE.arora_gb(params.updated(Xe=ND.UniformMod(7))) Centered binomial distributions are also bounded:: LWE.arora_gb(params.updated(Xe=ND.CenteredBinomial(8))) The secret plays its role, too, in reducing the cost of solving:: LWE.arora_gb(params.updated(Xs=ND.UniformMod(5), Xe=ND.CenteredBinomial(4), m=1024)) :: LWE.arora_gb(params.updated(Xs=ND.UniformMod(3), Xe=ND.CenteredBinomial(4), m=1024))